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Abstract—Client-side JavaScript is widely used in web applications to improve user-interactivity and minimize client-server
communications. Unfortunately, JavaScript is known to be error-prone. While prior studies have demonstrated the prevalence of
JavaScript faults, no attempts have been made to determine their causes and consequences. The goal of our study is to understand
the root causes and impact of JavaScript faults and how the results can impact JavaScript programmers, testers and tool developers.
We perform an empirical study of 502 bug reports from 19 bug repositories. The bug reports are thoroughly examined to classify and
extract information about each bug’s cause (the error ) and consequence (the failure and impact). Our results show that the majority
(68%) of JavaScript faults are DOM-related, meaning they are caused by faulty interactions of the JavaScript code with the Document
Object Model (DOM). Further, 80% of the highest impact JavaScript faults are DOM-related. Finally, most JavaScript faults originate
from programmer mistakes committed in the JavaScript code itself, as opposed to other web application components. These results
indicate that JavaScript programmers and testers need tools that can help them reason about the DOM. Additionally, developers can
use the error patterns we found to design more powerful static analysis tools for JavaScript.

Index Terms—Faults, JavaScript, Document Object Model (DOM), bug reports, empirical study.
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1 INTRODUCTION

W EB developers often rely on JavaScript to enhance
the interactivity of a web application on the client.

For instance, JavaScript is used to assign event handlers
to different web application components, such as buttons,
links, and input boxes, effectively defining the functionality
of the web application when the user interacts with its
components. In addition, JavaScript can be used to send
asynchronous HTTP requests to the server, and update the
web page’s contents with the resulting response.

JavaScript contains several features that set it apart from
traditional languages. First of all, JavaScript code executes
under an asynchronous model. This allows event handlers
to execute on demand, as the user interacts with the web
application components. Secondly, much of JavaScript is
designed to interact with an external entity known as the
Document Object Model (DOM). This entity is a dynamic
tree-like structure that includes the components in the web
application and how they are organized. Using DOM API
calls, JavaScript can be used to access or manipulate the
components stored in the DOM, thereby allowing the web
page to change without requiring a page reload.

While the above features allow web applications to be
highly interactive, they also introduce additional avenues
for faults in the JavaScript code. In a previous study [1], we
collected JavaScript console messages (i.e., exceptions) from
fifty popular web applications to understand how prone
web applications are to JavaScript faults and what kinds
of JavaScript faults appear in these applications. While the
study pointed to the prevalence of JavaScript faults, it did
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not explore their impact or root cause, nor did it analyze
the kinds of failures they caused. Understanding the root
cause and impact of the faults is vital for developers, testers,
as well as tool builders to increase the reliability of web
applications.

In this paper, our goal is to discover the causes of
JavaScript faults (the error) in web applications, and analyze
their consequences (the failure and impact). Towards this
goal, we conduct an empirical study of over 500 publicly
available JavaScript bug reports. We choose bug reports as
they typically have detailed information about a JavaScript
fault and also reveal how a web application is expected
to behave; this is information that would be difficult to
extract from JavaScript console messages or static analysis.
Further, we confine our search to bug reports that are
marked “fixed”, which eliminates spurious or superfluous
bug reports.

A major challenge with studying bug reports, however,
is that few web applications make their bug repositories
publicly available. Even those that do, often classify the
reports in ad-hoc ways, which makes it challenging to
extract the relevant details from the report [2]. Therefore,
we systematically gather bug reports and standardize their
format in order to study them.

Our work makes the following main contributions:

• We collect and systematically categorize a total of
502 bug reports, from 15 web applications and four
JavaScript libraries, and put the reports in a standard
format;

• We classify the JavaScript faults into multiple cate-
gories. We find that one category dominates the others,
namely DOM-related JavaScript faults (more details
below);
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• We analyze how many of the bugs can be classified
as type faults, which helps us assess the usefulness of
programming languages that add strict typing systems
to JavaScript, such as TypeScript [3] and Dart [4];

• We quantitatively analyze the nature (i.e., cause and
consequences) and the impact of JavaScript faults;

• Where appropriate, we perform a temporal analysis
of each bug report characteristic that we analyze. The
results of this analysis will indicate how technological
changes over the years have set the trend for these
characteristics, enabling us to see if we are moving
towards the right direction in improving the reliability
of client-side JavaScript;

• We analyze the implications of the results on develop-
ers, testers, and tool developers for JavaScript code.

Our results show that around 68% of JavaScript faults
are DOM-related faults, which occur as a result of a faulty
interaction between the JavaScript code and the DOM. A
simple example is the retrieval of a DOM element using an
incorrect ID, which can lead to a null exception. Further, we
find that DOM-related faults account for about 80% of the
highest impact faults in the web application. Finally, we find
that the majority of faults arise due to the JavaScript code
rather than server side code/HTML, and that there are a few
recurring programming patterns that lead to these bugs.

In addition to the results from the bug report study
described in our ESEM’13 paper [5], of which this current
work is an extension, we also find that a small – but non-
negligible – percentage (33%) of the bug reports are type
faults, which we describe in Section 2. Furthermore, in our
temporal analysis, we observed both downward trends in
certain metrics (e.g., browser specificity) and upward trends
in others (e.g., number of errors committed in the JavaScript
code).

2 BACKGROUND AND MOTIVATION

This section provides background information on the struc-
ture of modern web applications, and how JavaScript is
used in such applications. We also define terms used
throughout this paper such as JavaScript error, fault, failure,
and impact. Finally, we describe the goal and motivation of
our study.

2.1 Web Applications

Modern web applications contain three client-side compo-
nents: (1) HTML code, which defines the webpage’s initial
elements and its structure; (2) CSS code, which defines these
elements’ initial styles; and (3) JavaScript1 code, which de-
fines client-side functionality in the web application. These
client-side components can either be written manually by
the programmer, or generated automatically by the server-
side (e.g., PHP) code.

The Document Object Model (DOM) is a dynamic tree data
structure that defines the elements in the web application,
their properties including their styling information, and

1. JavaScript is a scripting language based on the ECMAScript stan-
dard, and it is used in other applications such as desktop widgets and
even web servers. However, we restrict ourselves to JavaScript used on
the client-side of web applications.

how the elements are structured. Initially, the DOM contains
the elements defined in the HTML code, and these elements
are assigned the styling information defined in the CSS
code. However, JavaScript can be used to manipulate this
initial state of the DOM through the use of DOM API
calls. For example, an element in the DOM can be accessed
through its ID by calling the getElementById() method.
The attributes of this retrieved DOM element can then be
modified using the setAttribute() method. In addition,
elements can be added to or removed from the DOM by the
JavaScript code.

In general, a JavaScript method or property that retrieves
elements or attributes from the DOM is called a DOM access
method/property. Examples of these methods/properties in-
clude getElementById(), getElementsByTagName(),
and parentNode. Similarly, a JavaScript method or prop-
erty that is used to update values in the DOM (e.g., its struc-
ture, its elements’ properties, etc.) is called a DOM update
method/property. Examples include setAttribute(),
innerHTML, and replaceChild(). Together, the access
and update methods/properties constitute the DOM API.

2.2 JavaScript Bugs

JavaScript is particularly prone to faults, as it is a weakly
typed language, which makes the language flexible but also
opens the possibility for untyped variables to be (mis)used
in important operations. In addition, JavaScript code can be
dynamically created during execution (e.g., by using eval),
which can lead to faults that are only detected at runtime.
Further, JavaScript code interacts extensively with the DOM,
which makes it challenging to test/debug, and this leads to
many faults as we find in our study.

JavaScript Bug Sequence. In this paper, we use the term bug
as a catch-all term that pertains to an undesired behaviour of
the web application’s functionality. The following sequence
describes the progression of a JavaScript bug, and the terms
we use to describe this sequence:

1) The programmer makes a mistake at some point in the
code being written or generated. These errors can range
from simple mistakes such as typographical errors or
syntax errors, to more complicated mistakes such as
errors in logic or semantics. The error can be committed
in the JavaScript code, or in other locations such as the
HTML code or server-side code (e.g., PHP).

2) The error can propagate, for instance, into a JavaScript
variable, the parameter or assignment value of a
JavaScript method or property, or the return value of
a JavaScript method during JavaScript code execution.
Hence, by this point, the error has propagated into a
fault.

3) The fault either directly causes a JavaScript exception
(code-terminating failure) or a corruption in the output
(output-related failure). This is called the failure.

Figure 1 shows a real-world example of the error, fault,
and failure associated with a JavaScript bug report from
the Moodle web application. Note that for output-related
failures, the pertinent output can be one or a combination of
many things, including the DOM, server data, or important
JavaScript variables. We will be using the above error-fault-



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2586066, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, 2016 3

Error: The programmer forgets to initialize the
value of the cmi.evaluation.comments

variable.

Fault: The cmi.evaluation.comments
variable – which is uninitialized and hence has
the value null – is used to access a property X
(i.e., cmi.evaluation.comments.X) during

JavaScript execution.

Failure: Since cmi.evaluation.comments is
null, the code attempting to access a property

through it leads to a null exception, which
terminates JavaScript execution.

Fig. 1: Example that describes the error, fault, and failure of
a JavaScript bug reported in Moodle.

failure model to classify JavaScript bugs, as described in
Section 3.

DOM-Related Faults. We define a DOM-related fault as
follows:

Definition 1 (DOM-Related Fault) A JavaScript bug B is
considered to have propagated into a DOM-related fault if the
corresponding error causes a DOM API method DAm to be called
(or causes an assignment to a DOM API property DAp to be
made), such that a parameter P passed to DAm (or a value A
assigned to DAp) is incorrect.

In other words, if a JavaScript error propagates into
the parameter of a DOM access/update method or to the
assignment value for a DOM access/update property –
thereby causing an incorrect retrieval or an incorrect update
of a DOM element – then the error is said to have prop-
agated into a DOM-related fault. For example, if an error
eventually causes the parameter of the DOM access method
getElementById() to represent a nonexistent ID, and this
method is called during execution with the erroneous pa-
rameter, then the error has propagated into a DOM-related
fault. However, if the error does not propagate into a DOM
access/update method/property, the error is considered to
have propagated into a non-DOM-related fault. Note that
based on this definition, the presence of a large number of
DOM interactions in the JavaScript code does not necessar-
ily imply the presence of a large percentage of DOM-related
faults, as not all errors would necessarily propagate to any
DOM API method calls in the code.

Type Faults. We are also interested in determining the
prevalence of type faults, which we define as follows:

Definition 2 (Type Fault) A JavaScript bug B is considered to
have propagated into a type fault if there exists a statement L in
the JavaScript code such that, during the execution of the code that
reproduces B, the statement L references an expression or variable

E that it expects to be of type t1, but E ’s actual type at runtime is
t2 (with t2 6= t1).

In other words, a type fault occurs if the JavaScript code
erroneously assumes during execution that a certain value
is of a certain type. Note that our comparison of types bears
some similarities to Pradel et al.’s definition of consistent
types [6]. In particular, we both make a distinction between
different “type categories”, such as primitive types and cus-
tom types; we describe this in further detail in Section 3.4.

Severity. While the appearance of a failure is clear-cut and
mostly objective (i.e., either an exception is thrown or not;
either an output contains a correct value or not), the severity
of the failure is subjective, and depends on the context in
which the web application is being used. For example, an
exception may be classified as non-severe if it happens in a
“news ticker” web application widget; but if the news ticker
is used for something important – say, stocks data – the same
exception may now be classified as severe. In this paper, we
will refer to the severity as the impact of the failure. We
determine impact based on a qualitative analysis of the web
application’s content and expected functionality.

2.3 Goal and Motivation

Our overall goal in this work is to understand the sources and
the impact of client-side JavaScript faults in web applications.
To this end, we conduct an empirical study of JavaScript
bug reports in deployed web applications. There are several
factors that motivated us to pursue this goal. First, under-
standing the root cause of JavaScript faults could help make
developers aware of programming pitfalls to be avoided,
and the results could pave the way for better JavaScript
debugging techniques. Second, analyzing the impact could
steer developers’ and testers’ attention towards the highest
impact faults, thereby allowing these faults to be detected
early. Finally, we have reason to believe that JavaScript
faults’ root causes and impacts differ from those of tradi-
tional languages because of JavaScript’s permissive nature
and its many distinctive features (e.g., event-driven model;
interaction with the DOM; dynamic code creation; etc.)

Other work has studied JavaScript faults through con-
sole messages or through static analysis [7], [8], [9], [10].
However, bug reports contain detailed information about
the root cause of the faults and the intended behaviour of the
application, which is missing in these techniques. Further,
they typically contain the fix associated with the fault,
which is useful in further understanding it, for example,
to determine fix times.

3 EXPERIMENTAL METHODOLOGY

We describe our methodology for the empirical study on
JavaScript faults. First, we enumerate the research questions
that we want to answer. Then we describe the web appli-
cations we studied and how we collected their bug reports.
All our collected empirical data is available for download.2

2. http://ece.ubc.ca/∼frolino/projects/js-bugs-study/

http://ece.ubc.ca/~frolino/projects/js-bugs-study/
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3.1 Research Questions
To achieve our goal, we address the following research
questions through our bug report study:
RQ1: What categories of faults exist among reported

JavaScript faults, and how prevalent are these fault
categories?

RQ2: What is the nature of failures stemming from
JavaScript faults? What is the impact of the failures on
the web applications?

RQ3: What is the root-cause of JavaScript faults? Are there
specific programming practices that lead to JavaScript
faults?

RQ4: Do JavaScript faults exhibit browser-specific be-
haviour?

RQ5: How long does it take to triage a JavaScript fault
reported in a bug report and assign it to a devel-
oper? How long does it take programmers to fix these
JavaScript faults?

RQ6: How prevalent are type faults among the reported
bugs?

RQ7: How have the characteristics of JavaScript faults –
particularly those analyzed in the above research ques-
tions – varied over time?

3.2 Experimental Objects
To ensure representativeness, we collect and categorize bug
reports from a wide variety of web applications and li-
braries. Each object is classified as either a web application
or a JavaScript library. In the conference version of this
paper [5], we initially made this distinction to see if there
are any differences between JavaScript faults in web appli-
cations and those in libraries. We did not, however, find
any substantial differences after performing our analysis;
therefore, our selection of additional experimental objects
compared to the conference version was not influenced by
this distinction, and we do not report them separately. In
total, we collected and analyzed 502 bug reports from 15
web applications and four libraries.

Table 1 lists the range of the software versions considered
for each experimental object. The web applications and li-
braries were chosen based on several factors, including their
popularity, their prominent use of client-side JavaScript,
and the descriptiveness of their bug reports (i.e., the more
information its bug reports convey, the better). Another
contributing factor is the availability of a bug repository for
the web application or library, as such repositories were not
always made public. In fact, finding web applications and
libraries that satisfied these criteria was a major challenge in
this study.

3.3 Collecting the Bug Reports
For each web application bug repository, we collect a total
of min{30, NumJSReports} JavaScript bug reports, where
NumJSReports is the total number of JavaScript bug reports
in the repository. We chose 30 as the maximum threshold
for each repository to balance analysis time with represen-
tativeness. To collect the bug reports for each repository, we
perform the following steps:
Step 1 Use the filter/search tool available in the bug repos-

itory to narrow down the list of bug reports. The filters

and search keywords used in each bug repository are
listed in Table 1. In general, where appropriate, we
used “javascript” and “js” as keywords to narrow down
the list of bug reports (in some bug repositories, the
keyword “jQuery” was also used to narrow down the
list even further). Further, to reduce spurious or super-
fluous reports, we only considered bug reports with
resolution “fixed”, and type “bug” or “defect” (i.e., bug
reports marked as “enhancements” were neglected).
Table 1 also lists the number of search results after
applying the filters in each bug repository. The bug
report repositories were examined between January 30,
2013 and March 13, 2013 (applications #1-8, 16-19),
and between February 30, 2015 and March 25, 2015
(applications #9-15).

Step 2 Once we have the narrowed-down list of bug reports
from Step 1, we manually examine each report in the or-
der in which it was retrieved. Since the filter/search fea-
tures of some bug tracking systems were not as descrip-
tive (e.g., the TYPO3 bug repository only allowed the
user to search for bug reports marked “resolved”, but
not “fixed”), we also had to manually check whether
the bug report satisfied the conditions described in Step
1. If the conditions are satisfied, we analyzed the bug
report; otherwise, we discarded it. We also discarded
a bug report if its fault is found to not be JavaScript-
related – that is, the error does not propagate into
any JavaScript code in the web application. This step
is repeated until min{30, NumJSReports} reports have
been collected in the repository. The number of bug
reports we collected for each bug repository is shown in
Table 1. Note that three applications had fewer than 30
reports that satisfied the above criteria, namely Joomla,
TaskFreak, and FluxBB. For all remaining applications,
we collected 30 bug reports each.

Step 3 For each report, we created an XML file that de-
scribes and classifies the error, fault, failure, and impact
of the JavaScript bug reported. The XML file also de-
scribes the fix applied for the bug. Typically this data
is presented in raw form in the original bug report,
based on the bug descriptions, developer discussions,
patches, and supplementary data; hence, we needed
to read through, understand, and interpret each bug
report in order to extract all the information included
in the corresponding XML file. We also include data
regarding the date and time of each bug being assigned
and fixed in the XML file. We have made these bug
report XML files publicly available for reproducibility.2

3.4 Analyzing the Collected Bug Reports
The collected bug report data, captured in the XML files,
enable us to qualitatively and quantitatively analyze the
nature of JavaScript bugs.
Fault Categories. To address RQ1, we classify the bug
reports according to the following fault categories that were
identified through an initial pilot study:

• Undefined/Null Variable Usage: A JavaScript variable
that has a null or undefined value – either because
the variable has not been defined or has not been
assigned a value – is used to access an object property
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TABLE 1: Experimental subjects from which bug reports were collected.

Application Application Version Type Description Size of Bug Report Search Filter # of
ID Name Range JS Code Reports

(KB) Collected
1 Moodle 1.9-2.3.3 Web Application Learning Management 352 (Text contains javascript OR js OR

jquery) AND (Issue type is bug) AND
(Status is closed) - Number of Results:
1209

30

2 Joomla 3.x Web Application Content Management 434 (Category is JavaScript) AND (Status
is Fixed) - Number of Results: 62

11

3 WordPress 2.0.6-3.6 Web Application Blogging 197 ((Description contains javascript OR js)
OR (Keywords contains javascript OR
js)) AND (status is closed) - Number of
Results: 875

30

4 Drupal 6.x-7.x Web Application Content Management 213 (Text contains javascript OR js OR
jQuery) AND (Category is bug report)
AND (Status is closed(fixed)) - Number
of Results: 608

30

5 Roundcube 0.1-0.9 Web Application Webmail 729 ((Description contains javascript OR js)
OR (Keywords contains javascript OR
js)) AND (status is closed) - Number of
Results: 234

30

6 WikiMedia 1.16-1.20 Web Application Wiki Software 160 (Summary contains javascript) AND
(Status is resolved) AND (Resolution
is fixed) - Number of Results: 49

30

7 TYPO3 1.0-6.0 Web Application Content Management 2252 (Status is resolved) AND (Tracker is
bug) AND (Subject contains javascript)
(Only one keyword allowed) - Num-
ber of Results: 81

30

8 TaskFreak 0.6.x Web Application Task Organizer 74 (Search keywords contain javascript
OR js) AND (User is any user) - Num-
ber of Results: 57

6

9 Horde 1.1.2-2.0.3 Web Application Webmail 238 (Type is bug) AND (State is re-
solved (bug)) AND ((Summary con-
tains javascript) OR (Comments con-
tain javascript)) - Number of Results:
300

30

10 FluxBB 1.4.3-1.4.6 Web Application Forum System 8 (Type is bug) AND (Status is fixed)
AND (Search keywords contain
javascript) - Number of Results: 8

5

11 LimeSurvey 1.9.x-2.0.x Web Application Survey Maker 442 (Status is closed) AND (Resolution is
fixed) AND (Text contains javascript) -
Number of Results: 252

30

12 DokuWiki 2009-2014 Web Application Wiki Software 446 (Status is all closed tasks) AND (Task
type is bug report) AND (Text contains
javascript OR js) - Number of Results:
159

30

13 phpBB 3.0.x Web Application Forum System 176 (Status is closed) AND (Resolution is
fixed) AND (Text contains javascript
OR js) - Number of Results: 112

30

14 MODx 1.0.3-2.3.0 Web Application Content Management 1229 (Type is issue) AND (Status is closed)
AND (Text contains javascript OR js) -
Number of Results: 219

30

15 EZ Systems 3.5-5.3 Web Application Content Management 180 (Issue type is bug) AND (Status is
closed) AND (Resolution is fixed) AND
(Text contains javascript OR js) - Num-
ber of Results: 229

30

16 jQuery 1.0-1.9 Library — 94 (Type is bug) AND (Resolution is
fixed) - Number of Results: 2421

30

17 Prototype.js 1.6.0-1.7.0 Library — 164 (State is resolved) - Number of Results:
142

30

18 MooTools 1.1-1.4 Library — 101 (Label is bug) AND (State is closed) -
Number of Results: 52

30

19 Ember.js 1.0-1.1 Library — 745 (Label is bug) AND (State is closed) -
Number of Results: 347

30

or method. Example: The variable x, which has not been
defined in the JavaScript code, is used to access the
property bar via x.bar.

• Undefined Method: A call is made in the JavaScript
code to a method that has not been defined. Exam-
ple: The undefined function foo() is called in the
JavaScript code.

• Incorrect Method Parameter: An unexpected or in-
valid value is passed to a native JavaScript method,
or assigned to a native JavaScript property. Example:
A string value is passed to the JavaScript Date object’s
setDate() method, which expects an integer. Another

example is passing an ID string to the DOM method
getElementById() that does not correspond to any
IDs in the DOM. Note that this latter example is a type
of DOM-related fault, which is a subcategory of Incorrect
Method Parameter faults where the method/property
is a DOM API method/property (as defined in Sec-
tion 2.2).

• Incorrect Return Value: A user-defined method is
returning an incorrect return value even though the
parameter(s) is/are valid. Example: The user-defined
method factorial(3) returns 2 instead of 6.

• Syntax-Based Fault: There is a syntax error in the
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TABLE 2: Impact Categories.

Type Description Examples
1 Cosmetic Table is not centred; header is

too small
2 Minor functionality loss Cannot create e-mail addresses

containing apostrophe charac-
ters, which are often only used
by spammers

3 Some functionality loss Cannot use delete button to
delete e-mails, but delete key
works fine

4 Major functionality loss Cannot delete e-mails at all;
cannot create new posts

5 Data loss, crash, or security issue Browser crashes/hangs; entire
application unusable; save but-
ton does not work and pre-
vents user from saving consid-
erable amount of data; informa-
tion leakage

JavaScript code. Example: There is an unescaped apos-
trophe character in a string literal that is defined using
single quotes.

• Other: Errors that do not fall into the above categories.
Example: There is a naming conflict between methods
or variables in the JavaScript code.

Note that we do not find instances where a bug re-
port belongs to multiple fault categories, and hence, we
disregard the “Multiple” category in our description of the
results.
Failure Categories. The failure category refers to the ob-
servable consequence of the fault. For each bug report, we
marked the failure category as either Code-terminating or
Output-related, as defined in Section 2.2. This categorization
helps us answer RQ2.
Impact Categories. We manually classify the impact of a
JavaScript bug according to the classification scheme used
by Bugzilla.3 This scheme is applicable to any software
application, and has also been used in other studies [11],
[12]. Table 2 shows the categories. This categorization helps
us answer RQ2.
Error Locations. The error location refers to the code unit or
file where the error was made (either by the programmer or
the server-side program generating the JavaScript code). For
each bug report, we marked the error location as one of the
following: (1) JavaScript code (JS); (2) HTML Code (HTML);
(3) Server-side code (SSC); (4) Server configuration file (SCF);
(5) Other (OTH); and (6) Multiple error locations (MEL). In
cases where the error location is marked as either OTH or
MEL, the location(s) is/are specified in the error description.
The error locations were determined based on information
provided in the bug report description and comments. This
categorization helps us answer RQ3.
Browser Specificity. In addition, we also noted whether a
certain bug report is browser-specific – that is, the fault
described in the report only occurs in one or two web
browsers, but not in others – to help us answer RQ4.
Time for Fixing. To answer RQ5, we define the triage time
as the time it took a bug to get assigned to a developer,
from the time it was reported (or, if there is no “assigned”
marking, the time until the first comment is posted in the
report). We also define fix time as the time it took the

3. http://www.bugzilla.org/

corresponding JavaScript fault to get marked as “fixed”,
from the time it was triaged. We recorded the time taken
for each JavaScript bug report to be triaged, and for the
report to be fixed. Other studies have classified bugs on a
similar basis [13], [14]. Further, we calculate times based on
the calendar date; hence, if a bug report was triaged on the
same date as it was reported, the triage time is recorded as
0.

Type Faults. Programming languages such as TypeScript [3]
and Dart [4] aim to minimize JavaScript faults through
a stricter typing system for JavaScript; hence, the main
fault model targeted by these languages are type faults.
In our work, we assess the usefulness of strong typing in
such languages by examining the prevalence of type faults
among the bug reports, which addresses RQ6.

In our analysis, we consider four different “type cate-
gories”, listed below.

• Primitive types [P]: Values of type string, boolean,
or number

• Null/undefined types [Nu]: null or undefined
• Native “class” types [Nc]: Objects native to client-side

JavaScript (e.g., Function, Element, etc.)
• Custom “class” types [C]: User-defined objects

We first categorize a bug report as either a type fault
or not a type fault, based on the definition provided in
Section 2.2. For each bug report categorized as a type fault,
we further categorize it as belonging to one of 16 subcat-
egories, each of the form, “<type category> expected, but
<type category> actual,” which, for simplicity, we abbreviate
as <type category>E<type category>A. For example, a type
fault belongs to the PEPA category if a value is expected
to be of a certain primitive type in the JavaScript code –
say boolean – but its actual type at runtime is a different
primitive type – say string. Similarly, an NcENuA type
fault occurs if a value is expected to be of a native “class”
type, but its actual type at runtime is null or undefined.

Note that type comparisons are made in a way similar
to Pradel et al.’s method for detecting inconsistent types [6].
Finally, note that we classify a bug report as “not a type
fault” if we do not find a statement L that satisfies the
definition given in Section 2.2.

Temporal Analysis. Where appropriate, for every data point
we collect to answer the first six research questions, we
analyze how these data have changed over time. The pur-
pose of this analysis – which answers RQ7 – is to help us
understand and speculate how historical factors such as
browser improvements, the appearance of new JavaScript
frameworks, and the rise in popularity of “Q&A” websites
(e.g., StackOverflow), among others, have helped in the
improvement of the reliability of client-side JavaScript, or
degraded it.

To perform this temporal analysis, we mark each bug
report with the year in which it was reported. In our specific
case, the bug reports we collected were reported over a
period of 13 calendar years, from 2003 to 2015. However, we
neglect the years 2003 and 2015 in our analysis, since fewer
than 3 bug reports were marked with each of these years;
hence, we only consider 11 calendar years in our analysis
(i.e., 2004 to 2014), each of which corresponds to at least

http://www.bugzilla.org/
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Fig. 2: Bug reports per calendar year. Note that there was
one additional bug report from 2003, and two additional
bug reports from 2015.
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Fig. 3: Pie chart of the distribution of fault categories.

17 bug reports. The number of bug reports in each of these
calendar years is shown in Figure 2.

4 RESULTS

In this section, we present the results of our empirical study
on JavaScript bug reports. The subsections are organized
according to the research questions in Section 3.1.

4.1 Fault Categories

Table 3 shows the breakdown of the fault categories in
our experimental objects. The pie chart in Figure 3 shows
the overall percentages. As seen from the table and the
figure, approximately 75% of JavaScript faults belong to the
“Incorrect Method Parameter” category. This suggests that
most JavaScript faults result from errors related to setting up
the parameters of native JavaScript methods, or the values
assigned to native JavaScript properties.

Finding 1: “Incorrect Method Parameter” faults account for
around 75% of JavaScript faults.

In our earlier studies of JavaScript console messages [1]
and fault-localization of JavaScript bugs [15], we also no-
ticed many “Incorrect Method Parameter” faults, but their

prevalence was not quantified. Interestingly, we also ob-
served in these earlier studies that many of the methods
and properties affected by these faults are DOM meth-
ods/properties – in other words, DOM-related faults, as
defined in Section 2. Based on these prior observations, we
became curious as to how many of these “Incorrect Method
Parameter” faults are DOM-related.

We further classified the “Incorrect Method Parameter”
faults based on the methods/properties in which the in-
correct values propagated, and found that 91% of these
faults are DOM-related faults. This indicates that among all
JavaScript faults, approximately 68% are DOM-related faults
(see right-most pie chart in Figure 3). We find that DOM-
related faults range from 50 to 100% of the total JavaScript
faults across applications, as seen on the last column of
Table 3.

Lastly, in order to assess how many of the DOM-related
faults result from developers’ erroneous understanding of
the DOM, we make a distinction between strong DOM-
related faults and weak DOM-related faults. A DOM-related
fault is classified as strong if the incorrect parameter passed
to the DOM method/property represents an inconsistency
with the DOM; this includes, for example, cases where an
incorrect or non-existent selector/ID is passed to a DOM
method. Otherwise, the DOM-related fault is classified as
weak; this includes, for example, cases where the wrong
text value is assigned to innerHTML, or the wrong attribute
value is assigned to an attribute. Overall, we find that strong
DOM-related faults make up 88% of all DOM-related faults.
This result therefore strongly indicates that most DOM-
related faults occur as a result of an inconsistency between what
the developers think is the DOM contents, and what actually is
the DOM’s contents.

Finding 2: DOM-related faults account for 91% of “Incorrect
Method Parameter” faults. Hence, the majority – around 68%
– of JavaScript faults are DOM-related, and the majority –
around 88% – of these DOM-related faults are of the “strong”
variety.

Temporal Analysis. Figure 4a shows a scatter plot of the
percentage of bug reports marked as DOM-related per
calendar year. The linear regression line has a downward
slope, indicating an overall decrease in the percentage of
DOM-related faults over the years. However, this decrease
is very small, i.e., a decrease of 7 percentage points, which
corresponds to a 10% decrease. Hence, the percentage of
DOM-related faults reported in the repositories we analyzed
has remained rather consistent over the years.

Finding 3: The percentage of DOM-related faults among all
JavaScript faults has experienced only a small decrease (10%)
over the past ten years.

4.2 Consequences of JavaScript Faults
We now show the failure categories of the bug reports we
collected, as well as the impact of the JavaScript faults that
correspond to the reports.
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TABLE 3: Fault categories of the bug reports analyzed. Library data are shown in italics.

Application Undefined/Null Undefined Incorrect Syntax- Other Incorrect Method Percent
Variable Usage Method Return Based Parameter DOM-

Value Fault DOM-related Not DOM-related Total related
Moodle 3 3 0 7 0 15 2 17 50%
Joomla 1 0 0 3 0 6 1 7 55%
WordPress 1 2 0 3 1 21 2 23 70%
Drupal 0 1 0 5 0 23 1 24 77%
Roundcube 3 0 0 4 0 22 1 23 73%
WikiMedia 2 4 0 5 0 15 4 19 50%
TYPO3 2 2 0 7 1 18 0 18 60%
TaskFreak 1 0 0 0 0 4 1 5 67%
Horde 1 0 0 4 0 24 1 25 80%
FluxBB 0 0 0 0 0 5 0 5 100%
LimeSurvey 0 0 0 4 0 24 2 26 80%
DokuWiki 2 0 0 3 2 20 3 23 67%
phpBB 3 1 0 3 0 23 0 23 77%
MODx 1 1 0 3 1 21 3 24 70%
EZ Systems 2 2 0 7 1 17 1 18 57%
jQuery 0 0 1 0 0 26 3 29 87%
Prototype.js 0 1 2 0 0 22 5 27 73%
MooTools 3 1 3 0 1 19 3 22 63%
Ember.js 2 1 4 0 2 16 5 21 53%
Overall 27 19 10 58 9 341 38 379 68%

Failure Categories. Table 4 shows the distribution of fail-
ure categories amongst the collected reports; all faults are
classified as either leading to a code-terminating failure
or an output-related failure (these terms are defined in
Section 3.4). Note that the goal of this classification is not to
assess the severity of the bugs, but rather, to determine the
nature of the failure (i.e., whether there is a corresponding
error message or not). Making this distinction will be helpful
for developers of fault localization tools, for example, as
these error messages can naturally act as a starting point
for analysis of the bug.

As the table shows, around 57% of JavaScript faults
are code-terminating, which means that in these cases, an
exception is thrown. Faults that lead to code-termination are
generally easier to detect, since the exceptions have one or
more corresponding JavaScript error message(s) (provided
the error can be reproduced during testing). On the other
hand, output-related failures do not have such messages;
they are typically only detected if the user observes an
abnormality in the behaviour of the application.

Since the majority of JavaScript faults are DOM-related,
we explored how these failure categories apply to DOM-
related faults. Interestingly, we found that for DOM-related
faults, most failures are output-related (at 57%), while for
non-DOM-related faults, most failures are code-terminating
(at 86%). This result suggests that DOM-related faults may
be more difficult to detect than non-DOM-related faults, as
most of them do not lead to exceptions or error messages.

Finding 4: While most non-DOM-related JavaScript faults lead
to exceptions (around 86%), only a relatively small percentage
(43%) of DOM-related faults lead to such exceptions.

Temporal Analysis. A scatter plot of the percentage of code-
terminating failures per year is shown in Figure 4b. This
figure shows the percentage of code-terminating failures,
over time, for each fault category (i.e., DOM-related vs non-
DOM-related). In both cases, there is a net decrease in the
number of code-terminating failures, with a slightly larger

TABLE 4: Number of code-terminating failures compared
to output-related failures. Library data are shown in italics.
Data for DOM-related faults only are shown in parentheses.

Application Code-terminating Output-related
Moodle 21 (8) 9 (7)
Joomla 8 (3) 3 (3)
WordPress 11 (3) 19 (18)
Drupal 12 (5) 18 (18)
Roundcube 18 (11) 12 (11)
WikiMedia 19 (4) 11 (11)
TYPO3 21 (9) 9 (9)
TaskFreak 3 (2) 3 (2)
Horde 17 (11) 13 (13)
FluxBB 3 (3) 2 (2)
LimeSurvey 11 (7) 19 (17)
DokuWiki 9 (4) 21 (16)
phpBB 19 (12) 11 (11)
MODx 21 (14) 9 (7)
EZ Systems 27 (15) 3 (2)
jQuery 17 (13) 13 (13)
Prototype.js 10 (7) 20 (15)
MooTools 21 (10) 9 (9)
Ember.js 16 (5) 14 (11)
Overall 284 (146) 218 (195)

decrease for non-DOM-related faults. The overall decrease
in code-terminating failures may be explained in part by the
improvements in error consoles as well as the introduction
of tools such as Firebug,4 both of which facilitate the pro-
cess of debugging code-terminating failures within the web
browser.

Finding 5: The percentage of code-terminating failures ex-
perienced a net decrease for both DOM-related faults (17%
decrease) and non-DOM-related faults (21% decrease) over the
past ten years.

Impact Categories. The impact indicates the severity of the
failure. Hence, we also classify bug reports based on impact
categories as defined in Section 3.4 (i.e., Type 1 has lowest
severity, and Type 5 has highest severity).

4. http://getfirebug.com/

http://getfirebug.com/
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Fig. 4: Temporal graphs showing (a) the percent of DOM-related faults per year; (b) the percent of code-terminating failures
per year. The red regression line represents DOM-related faults, while the blue regression line represents non-DOM-related
faults; (c) the percent of bug reports whose error is located in the JavaScript code, per year; (d) the percent of browser-
specific bugs per year; and (e) the percent of type faults per year

The impact category distribution for each web appli-
cation and library is shown in Table 5. Most of the bug
reports were classified as having Type 3 impact (i.e., some
functionality loss). Type 1 and Type 5 impact faults are the
fewest, with 53 and 34 bug reports, respectively. Finally,
Type 2 and Type 4 impact faults are represented by 123
and 60 bug reports, respectively. The average impact of the
collected JavaScript bug reports is close to the middle, at
2.80, which is in line with other studies [16].

Table 5 also shows the impact distribution for DOM-
related faults in parentheses. As seen in the table, each im-
pact category is comprised primarily of DOM-related faults.
Further, almost 80% (27 out of 34) of the highest severity
faults (i.e., Type 5 faults) are DOM-related. Additionally, 13
of the 19 experimental subjects contain at least one DOM-
related fault with Type 5 impact. This result suggests that
high severity failures often result from DOM-related faults. We
find that these high-impact faults broadly fall into three
categories.

1) Application/library becomes unusable. This occurs
because an erroneous feature is preventing the user
from using the rest of the application, particularly
in DOM-related faults, which make up 11 of the 15
faults in this category. For example, one of the faults
in Drupal prevented users from logging in (due to
incorrect attribute values assigned to the username and

TABLE 5: Impact categories of the bug reports analyzed.
Library data are shown in italics. Impact categories data for
DOM-related faults only are shown in parentheses.

Application Type 1 Type 2 Type 3 Type 4 Type 5
Moodle 10 (5) 12 (5) 0 (0) 6 (3) 2 (2)
Joomla 2 (2) 2 (0) 4 (2) 2 (1) 1 (1)
WordPress 4 (4) 7 (3) 12 (9) 3 (2) 4 (3)
Drupal 3 (3) 2 (1) 17 (12) 1 (1) 7 (6)
Roundcube 2 (2) 5 (4) 14 (9) 5 (3) 4 (4)
WikiMedia 2 (1) 8 (6) 15 (6) 1 (0) 4 (2)
TYPO3 0 (0) 4 (2) 20 (13) 5 (2) 1 (1)
TaskFreak 2 (1) 1 (1) 1 (0) 2 (2) 0 (0)
Horde 6 (3) 7 (6) 13 (11) 2 (2) 2 (2)
FluxBB 1 (1) 1 (1) 2 (2) 1 (1) 0
LimeSurvey 5 (4) 4 (2) 19 (16) 1 (1) 1 (1)
DokuWiki 5 (3) 7 (3) 16 (13) 2 (1) 0 (0)
phpBB 3 (0) 5 (4) 16 (14) 6 (5) 0 (0)
MODx 2 (1) 5 (3) 18 (14) 3 (2) 2 (1)
EZ Systems 1 (1) 2 (0) 25 (15) 2 (1) 0 (0)
jQuery 3 (3) 13 (13) 1 (1) 11 (8) 2 (1)
Prototype.js 0 (0) 7 (6) 19 (12) 2 (2) 2 (2)
MooTools 0 (0) 16 (8) 10 (8) 3 (3) 1 (0)
Ember.js 2 (0) 15 (10) 10 (4) 2 (1) 1 (1)
Overall 53 (34) 123 (78) 232 (161) 60 (41) 34 (27)

password elements), so the application could not even
be accessed.

2) Data loss. Once again, this is particularly true for DOM-
related faults, which account for 13 out of the 14 data-
loss-causing faults that we encountered. One example
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TABLE 6: Error locations of the bug reports analyzed. Li-
brary data are shown in italics.

Legend: JS = JavaScript code, HTML = HTML code, SSC = Server-side code, SCF
= Server configuration file, OTH = Other, MEL = Multiple error locations

Application JS HTML SSC SCF OTH MEL
Moodle 22 2 6 0 0 0
Joomla 9 0 1 0 0 1
WordPress 24 0 6 0 0 0
Drupal 29 0 1 0 0 0
Roundcube 26 0 4 0 0 0
WikiMedia 25 0 5 0 0 0
TYPO3 18 1 9 2 0 0
TaskFreak 6 0 0 0 0 0
Horde 22 1 4 2 1 0
FluxBB 5 0 0 0 0 0
LimeSurvey 25 1 3 0 1 0
DokuWiki 26 1 2 0 1 0
phpBB 23 5 0 1 1 0
MODx 23 1 6 0 0 0
EZ Systems 19 5 6 0 0 0
jQuery 30 – – – 0 0
Prototype.js 25 – – – 4 1
MooTools 30 – – – 0 0
Ember.js 30 – – – 0 0
Overall 417 17 53 5 8 2

comes from Roundcube; in one of the bug reports,
the fault causes an empty e-mail to be sent, which
causes the e-mail written by the user to be lost. As an-
other example, a fault in WordPress causes server data
(containing posts) to be deleted automatically without
confirmation.

3) Browser hangs and information leakage. Hangs often
occur as a result of a bug in the browser; the Type 5
faults leading to browser hangs that we encountered
are all browser-specific. Information leakage occurred
twice – in TYPO3 and MODx – as a result of JavaScript
faults that caused potentially security-sensitive code
from the server to be displayed on the page; one of these
bugs leading to information leakage is DOM-related.

Finding 6: About 80% of the highest severity JavaScript faults
are DOM-related.

4.3 Causes of JavaScript Faults

Locations. Before we can determine the causes, we first need
to know where the programmers committed the program-
ming errors. To this end, we marked the error locations
of each bug report; the error location categories are listed
in Section 3.4. The results are shown in Table 6. As the
results show, the vast majority (83%) of the JavaScript faults
occur as a result of programming errors in the JavaScript
code itself. When only DOM-related faults were considered,
a similar distribution of fault locations was observed; in
fact, the majority is even larger for DOM-related faults
that originated from the JavaScript code, at 89%. Although
JavaScript code could be automatically written by external
tools, we observed that the fix for these bugs involved the
manual modification of the JavaScript file(s) where the error
is located. This observation provides a good indication that
JavaScript faults typically occur because the programmer
herself writes erroneous code, as opposed to server-side

code automatically generating erroneous JavaScript code, or
HTML.

Finding 7: Most JavaScript faults (83%) originate from
manually-written JavaScript code as opposed to code automati-
cally generated by the server.

Patterns. To understand the programmer mistakes associ-
ated with JavaScript errors, we manually examined the bug
reports for errors committed in JavaScript code (which were
the dominant category). We found that 55% of the errors fell
into the following common patterns (the remaining 45% of
the errors followed miscellaneous patterns):

1) Erroneous input validation. Around 16% of the bugs
occurred because inputs passed to the JavaScript code
(i.e., user input from the DOM or inputs to JavaScript
functions) are not being validated or sanitized. The
most common mistake made by programmers in this
case is neglecting valid input cases. For example, in the
jQuery library, the replaceWith() method is allowed
to take an empty string as input; however, the imple-
mentation of this method does not take this possibility
into account, thereby causing the call to be ignored.

2) Error in writing a string literal. Approximately 13%
of the bugs were caused by a mistake in writing a
string literal in the JavaScript code. These include for-
getting prefixes and/or suffixes, typographical errors,
and including wrong character encodings. About half
of these errors relate to writing a syntactically valid but
incorrect CSS selector (which is used to retrieve DOM
elements) or regular expression.

3) Forgetting null/undefined check. Around 10% of the
bugs resulted from missing null/undefined checks for a
particular variable, assuming that the variable is allowed
to have a value of null or undefined.

4) Neglecting differences in browser behaviour. Around
9% of the bugs were caused by differences in how
browsers treat certain methods, properties or operators
in JavaScript. Of these, around 60% pertain to differ-
ences in how browsers implement native JavaScript
methods. For example, a fault occurred in WikiMedia in
Internet Explorer 7 and 8 because of the different way
those browsers expect the history.go() method to
be used.

5) Error in syntax. Interestingly, around 7% of bugs re-
sulted from syntax errors in the JavaScript code that
were made by the programmer. Note, also, that we
found instances where server-side code generated syn-
tactically incorrect JavaScript code, though this is not
accounted for here.

Finding 8: There are several recurring error patterns – causing
JavaScript faults – that arise from JavaScript code.

Temporal Analysis. When plotted per year, the percentage
of bug reports whose corresponding error is located in the
JavaScript code results in a regression line that has a positive
slope, as seen in Figure 4c. In other words, the percentage
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TABLE 7: Browser specificity of the bug reports analyzed.
Library data are shown in italics.

Legend: IE = Internet Explorer, FF = Firefox, CHR = Chrome, SAF = Safari, OPE
= Opera, OTH = Other, NBS = Not browser-specific, MUL = Multiple

Application IE FF CHR SAF OPE OTH NBS MUL
Moodle 4 0 0 0 0 0 25 1
Joomla 1 0 0 0 0 0 10 0
WordPress 1 0 0 0 0 1 28 0
Drupal 2 0 1 1 0 0 26 0
Roundcube 5 0 1 0 1 1 22 0
WikiMedia 6 0 0 0 0 0 24 0
TYPO3 7 1 0 0 1 0 20 1
TaskFreak 1 0 0 1 0 0 4 0
Horde 8 1 0 3 0 0 18 0
FluxBB 0 0 0 0 0 0 5 0
LimeSurvey 5 1 0 0 0 0 24 0
DokuWiki 2 1 2 0 1 0 23 1
phpBB 2 2 0 1 2 1 22 0
MODx 3 0 0 1 0 0 26 0
EZ Systems 1 0 1 0 0 0 27 1
jQuery 7 0 0 0 0 0 22 1
Prototype.js 8 1 1 2 1 0 14 3
MooTools 10 2 0 0 1 0 17 0
Ember.js 2 0 0 0 0 0 28 0
Overall 75 9 6 9 7 3 385 8

of bug reports whose errors are located in the JavaScript
code generally increased from the year 2004 to 2014; in this
case, based on the endpoints of the regression line, there
was an increase of around 25%. We believe this trend is a
product of client-side scripting gaining more prominence
in web application development as the years went by. In
particular, during this time period, new and richer web
standards for ECMAScript [17] and XMLHttpRequest [18]
were being introduced, giving way for the rise in popularity
of Ajax, which developers could use to offload server-side
functionality to the client-side. As a result, since JavaScript is
being used more frequently, more errors are being commit-
ted in JavaScript code. In addition, the overall increase in the
trend may also be attributable to JavaScript code becoming
more complex as JavaScript gradually rose in popularity
over time.

Finding 9: Among JavaScript bugs, the percentage of errors
committed in the JavaScript code has experienced a 25% in-
crease over the past ten years.

4.4 Browser Specificity
We analyzed the browser specificity of the bug reports
we collected. A bug is browser specific if it occurs in at
most two web browsers. As Table 7 shows, most JavaScript
faults (77%) are non-browser specific (the same percentage
is acquired when only DOM-related faults are considered).
However, among the browser-specific faults, about 64% are
specific to Internet Explorer (IE).

After analyzing the IE-specific faults, we found that most
of them (56%) were due to the use of methods and proper-
ties that were not supported in that browser (particularly
in earlier versions, pre-Internet Explorer 8). This is likely
because the use of browser-specific method and property
names (which may not be standards-compliant) is more
prevalent in IE than in other browsers. In addition, IE has
low tolerance of small errors in the JavaScript code. For

example, 21% of the IE-specific faults occurred because IE
could not handle trailing commas in object-creation code;
while these trailing commas are syntax errors as per the EC-
MAScript standard, other browsers can detect their presence
and remove them.

Finding 10: Most JavaScript faults (77%) are not browser-
specific.

Temporal Analysis. Figure 4d shows the scatter plot for the
percentage of browser specific bug reports per year. Here,
the regression line has a negative slope; more specifically,
the regression line shows the browser specificity decreasing
by around 50% (i.e., from 32% in 2004 to 17% in 2014).
This decrease in browser specificity is consistent with results
found by three of the authors in a recent study, which
show an overall decrease in cross-browser-related questions
in StackOverflow from 2009 to 2012 [19]; this work posits
that the decrease may have been caused by the matura-
tion of browser support for HTML5, which was the focus
of the study. Other factors that may have contributed to
this decline include the introduction of JavaScript libraries
designed to eliminate cross-browser incompatibilities, some
of which are used in the web applications we studied, as
well as extensive research done recently on ways to mitigate
cross-browser compatibility issues [20], [21], [22], [23].

Finding 11: The percentage of browser-specific faults among all
JavaScript faults has experienced a 50% decrease over the past
ten years.

4.5 Triage and Fix Time for JavaScript Faults

We calculated the triage time and fix time for each bug
report. The results are shown in Figure 5a (triage time) and
Figure 5b (fix time) as box plots (the outliers are not shown).
Most of the bug reports were triaged on the same day they
were reported, which explains why the median of the triage
time for all bug reports, as seen in Figure 5a, is 0. Also, as
seen in Figure 5b, the median of the fix time for all bug
reports is 5 days. Finally, in addition to the box plots, we
calculated the mean triage and fix times for each bug report.
We found that, on average, the triage time for JavaScript
faults is approximately 29 days, while the average fix time
is approximately 65 days (see Table 8).

As before, we made the same calculations for DOM-
related faults and non-DOM-related faults. The comparisons
are shown in Figures 5a and 5b, as well as in Table 8. From
the box plots, we find that both DOM-related faults and non-
DOM-related faults have a median triage time of 0 days,
which indicates that the majority of either of these faults
gets triaged on the same day as they are reported. For the
fix times, DOM-related faults have a median fix time of 6
days, compared to 2 days for non-DOM-related faults. With
respect to the means (Table 8), we found that DOM-related
faults have an average triage time of 26 days, compared
to 37 days for non-DOM-related faults. On the other hand,
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Fig. 5: Box plot for (a) triage time, and (b) fix time

TABLE 8: Average triage times (T) and fix times (F) for each
experimental object, rounded to the nearest whole number.
Library data are shown in italics.

Application All Faults DOM-Related Non-DOM-Related
Faults Only Faults Only

T F T F T F
Moodle 248 10 205 12 292 8
Joomla 4 57 1 67 8 46
WordPress 1 138 2 150 0 108
Drupal 7 66 3 47 22 130
Roundcube 18 118 25 160 0 9
WikiMedia 18 26 36 44 1 8
TYPO3 7 55 7 67 6 36
TaskFreak 23 17 32 23 6 5
Horde 4 7 5 8 0 1
FluxBB 1 5 1 5 – –
LimeSurvey 10 47 5 58 28 5
DokuWiki 11 13 10 15 13 9
phpBB 3 60 3 64 4 46
MODx 86 46 116 64 16 4
EZ Systems 35 41 22 41 52 42
jQuery 1 33 1 36 1 10
Prototype.js 28 343 33 294 14 478
MooTools 10 48 10 49 9 47
Ember.js 0 11 1 14 0 8
Overall 29 65 26 71 37 52

DOM-related faults have an average fix time of 71 days,
compared to 52 days for non-DOM-related faults.

Taking the above results into account, it appears that
DOM-related faults generally have lower triage times than
non-DOM-related faults, while DOM-related faults have
higher fix times than non-DOM-related faults. This suggests
that developers find DOM-related faults important enough
to be triaged more promptly than non-DOM-related faults.
However, DOM-related faults take longer to fix, perhaps
because of their inherent complexity.

Finding 12: On average, DOM-related faults get triaged more
promptly than non-DOM-related faults (26 days vs. 37 days);
however, DOM-related faults take longer to fix than non-DOM-
related faults (71 days vs. 52 days).

4.6 Prevalence of Type Faults
We now discuss our findings regarding the prevalence of
type faults in the bug reports that we analyzed. As dis-
cussed in Section 3.4, each type fault category is identified
as “ E A”, where the first blank is represented by the
abbreviation of the expected type category, and the second
blank is represented by the abbreviation of the actual type
category.

The results are shown in Figure 6. Overall, as seen in
Figure 6a, only about 33% of the bug reports in our study
were classified as type faults. Further, of all the type faults,
72% belong to the NcENuA category, in which a native
“class” type is expected, but the actual type at runtime is
null or undefined (see Figure 6b). These results show
that in the subject systems, the vast majority of the bugs are
not type faults; thus, programming languages introducing
stronger typing systems to JavaScript, such as TypeScript
and Dart, as well as type checkers, may not eliminate most
JavaScript faults. It is worth noting, however, that these
languages have other advantages apart from strong typing,
including program comprehension and support for class-
based object-oriented programming.

We also studied the DOM-related faults, to determine
how many of them are type faults. The results for DOM-
related faults are also shown in Figure 6. Overall, we found
that 38% of DOM-related faults are also type faults. Most
of these type faults are also of the NcENuA variety; in
this case, the expected native “class” type is, for the most
part, Element. This finding suggests that stronger typing
systems and type checkers may also not eliminate most
DOM-related faults.

We also analyzed the severity of type faults, based on
the impact types assigned to each bug report. We found that
out of all the Type 4 and Type 5 impact bug reports, which
are the highest severity bugs, about 30% are type faults;
considering Type 5 impact bug reports alone, about 18% are
type faults. Therefore, based on our results, these languages
have limited ability in eliminating the majority of the highest
impact JavaScript bugs in web applications.
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Fig. 6: Bar graphs showing (a) the percentage of bug reports that are type faults versus the percentage of bug reports that
are not type faults and (b) the distribution of type fault categories

Finding 13: The majority (67%) of JavaScript faults are not
type faults, and the majority (62%) of DOM-related faults are
also not type faults. In addition, the majority of Type 4 and Type
5 impact bugs are not type faults, at 70%.

Temporal Analysis. As seen in Figure 4e, the regression line
for the percentage of type faults is relatively flat (with a
slight 3% increase from 2004 to 2014). Therefore, despite all
the technology that has been developed to eliminate these
type faults, the percentage of type faults has remained more
or less constant over the years. This may be caused by the
fact that most of the type faults we found in our study
belong to the NcENuA category, where a native “class”
type is expected, but the actual type at runtime is null or
undefined. In particular, current type checkers normally
cannot predict if the return value of a native JavaScript
method is null or undefined; for example, they cannot
predict if the return value of getElementById() is null
without looking at the DOM – which almost none of them
do – so that particular type fault will be missed.

Finding 14: The percentage of type faults among all JavaScript
faults has remained constant (with only a 3% increase) over the
past ten years.

4.7 Threats to Validity
An internal validity threat is that the bug classifications
were made by individuals (i.e., two of the co-authors),
which may introduce inconsistencies and bias, particularly
in the classification of the impacts. In order to mitigate
any possibilities of bias, we conducted a review process in
which each person reviews the classifications assigned by
the other person. Any disagreements were discussed until a
consensus on the classification was reached.

Another internal threat is in our analysis of type faults,
in which we assumed that a bug report does not correspond

to a type fault if the existence of a statement L from the
definition given in Section 2.2 could not be established,
based on our qualitative reading of the bug report. Hence,
the percentage of type faults we presented in Section 4.6
is technically a lower bound on the actual number of type
faults. Nonetheless, the lack of any indication in a bug report
that a statement L exists strongly suggests that inconsisten-
cies in types are not an issue with the bug.

In terms of external threats, our results are based on
bug reports from a limited number of experimental subjects,
from a limited time duration of ten years, which calls
into question the representativeness; unfortunately, public
bug repositories for web applications are not abundant, as
previously mentioned. We mitigated this by choosing web
applications that are used for different purposes, including
content management, webmail, and wiki. Further, prior to
2004, few websites used JavaScript, since Ajax programming
– which is often credited for popularizing JavaScript – did
not become widespread until around 2005 when Google
Maps was introduced [18].

A construct validity threat is that the bug reports may
not be fully representative of the JavaScript faults that
occur in web applications. This is because certain kinds of
faults – such as non-deterministic faults and faults with low
visual impact – may go unreported. In addition, we focus
exclusively on bug reports that were fixed. This decision
was made since the root cause would be difficult to deter-
mine from open reports, which have no corresponding fix.
Further, open reports may not be representative of real bugs,
as they are not deemed important enough to fix.

For the triage and fix times, we did not account for possi-
ble delays in marking a bug report as “assigned” or “fixed”,
which may skew the results. In addition, the triage time is
computed as the time until the first developer comment,
when there is no “assigned” marking; although we find
this approximation reasonable, the developer may not have
started fixing until some days after the first comment was
posted. Finally, the triage and fix times may be influenced
by external factors apart from the complexity of the bugs
(e.g., bug replication, vacations, etc.). These are likewise con-
struct validity threats. Nonetheless, note that other studies
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have similarly used time to estimate the difficulty of a fix,
including Weiss et al. [24] and Kim and Whitehead [25]. In
the former, the authors point out that the time it takes to
fix a bug is indicative of the effort required to fix it; the
difference between our estimation and theirs is that they
use the fix time reported by developers assigned to the bug,
which is unavailable in the bug repositories we studied.

5 DISCUSSION

In this section, we discuss the implications of our findings
on web application developers, testers, developers of web
analysis tools, and designers of web application develop-
ment frameworks.

Findings 1 and 2 reveal the difficulties that web applica-
tion developers have in setting up values passed or assigned
to native JavaScript methods and properties – particularly
DOM methods and properties. Finding 2, in particular, also
shows that most of the DOM-related faults that occur in
web applications are strong DOM-related faults, indicating
a mismatch between the programmer’s expectation of the
DOM and the actual DOM. Many of these difficulties arise
because the asynchronous, event-driven JavaScript code
must deal with the highly dynamic nature of the DOM.
This requirement forces the programmer to have to think
about how the DOM is structured and what properties its
elements possess at certain DOM interaction points in the
JavaScript code; doing so can be difficult because (1) the
DOM frequently changes at runtime and can have many
states, and (2) there are many different ways a user can
interact with the web application, which means there are
many different orders in which JavaScript event handlers
can execute. This suggests the need to equip these program-
mers with appropriate tools that would help them reason
about the DOM, thereby simplifying these DOM-JavaScript
interactions.

These first two findings also impact web application
testers, as they reveal certain categories of JavaScript faults
that users consider important enough to report, and hence,
that testers should focus on. Currently, one of the most
popular ways to test JavaScript code is through unit testing,
in which modules are tested individually; when creating
these unit tests, a mock DOM object is usually needed, in
order to allow the DOM API method calls present in the
module to function properly. While useful, this approach
often does not take into account the changing states of the
DOM when users are interacting with the web application in
real settings, because testers often create these mock DOM
objects simply to prevent the calls from failing. Finding 2,
in contrast, suggests that testers need to be more “DOM-
aware”, in that they need to take extra care in ensuring that
these mock objects emulate the actual DOM as closely as
possible.

In addition to unit testing, web application testers also
perform end-to-end (E2E) testing; here, user actions (e.g.,
clicks, hovers, etc.) are automatically applied to individual
webpages to assert that certain conditions about the DOM
are satisfied after carrying out these user actions. E2E testing
can help detect DOM-related faults; however, the problem
is that these tests often require the tester to know certain
properties about the DOM in order to set up the user actions

in the tests. As mentioned above, keeping track of these
properties of the DOM is difficult to do, judging by the large
percentage of strong DOM-related faults we observed in our
study. This makes E2E tests themselves susceptible to DOM-
related faults if written manually, which motivates the po-
tential usefulness of automated tools for writing these tests,
including record-replay and webpage crawling techniques.

With regards to Findings 4, 6, and 12, these results
suggest that web application testers should also prioritize
emulating DOM-related faults, as most high-impact faults
belong to this category. One possible way to do this is to
prioritize the creation of tests that cover DOM interaction
points in the JavaScript code. By doing so, testers can
immediately find most of the high-impact faults. This early
detection is useful because, as Finding 4 suggests, DOM-
related faults often have no accompanying error messages
and can be more difficult to detect. Further, as Finding 12
suggests, DOM-related faults take longer to fix on average
compared to non-DOM-related faults.

As mentioned previously, the presence of error messages
in JavaScript bugs can be useful, as these messages can
provide a natural starting point for analysis of these bugs.
Indeed, our fault localization tool AutoFLox [26] uses error
messages to automatically infer the line of code where the
failure takes place – which, in this case, is the same as the
exception point – as well as to determine the backward slice
of the null or undefined values that led to the exception.
However, as Finding 4 suggests, the majority of DOM-
related faults do not lead to exceptions and hence, do not
have accompanying error messages. This points to the need
to devise alternative ways to automatically determine the
line of code where the failure takes place when performing
fault localization. One possibility is to give developers the
ability to select, on the webpage itself, any DOM element
that is observed to be incorrect. A static analyzer can then
try to guess which lines of JavaScript code were the latest
ones to update the element; these lines will therefore be the
starting point for localization.

As for Findings 7 and 8, these results can be useful for
developers of static analysis tools for JavaScript. Many of
the current static analysis tools only address syntactic issues
with the JavaScript code (e.g., JSLint,5 Closure Compiler,6

JSure7), which is useful since a few JavaScript faults occur
as a result of syntax errors, as described in Section 4.3.
However, the majority of JavaScript faults occur because of
errors in semantics or logic. Some developers have already
started looking into building static semantics checkers for
JavaScript, including TAJS [27], which is a JavaScript type
analyzer. However, the programming mistakes we encoun-
tered in the bug reports (e.g., erroneous input validations,
erroneous CSS selectors, etc.) call for more powerful tools to
improve JavaScript reliability.

The recurring patterns to which Finding 8 refers can
be a starting point for devising a taxonomy for common
JavaScript errors. This taxonomy can be helpful in two
ways. First, it can facilitate the code review process, as the
taxonomy helps web developers identify certain “hot spots”

5. http://www.jslint.com
6. http://code.google.com/closure/compiler/
7. https://github.com/berke/jsure

http://www.jslint.com
http://code.google.com/closure/compiler/
https://github.com/berke/jsure
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in the code that have historically been susceptible to error.
In addition, tools such as FindBugs8 use a taxonomy of
common coding patterns and smells to automatically detect
errors in Java code using static analysis; in the same vein,
a taxonomy for JavaScript errors can help achieve the same
automatic error detection task for JavaScript code.

While Finding 10 suggests that most JavaScript faults are
non-browser specific, we did find a few (mostly IE-specific)
faults that are browser-specific. Hence, it is useful to design
JavaScript development tools that recognize cross-browser
differences and alerts the programmer whenever she forgets
to account for these. Some Integrated Development Environ-
ments (IDEs) for JavaScript have already implemented this
feature, including NetBeans9 and Aptana.10

Finding 13 shows that there is a significant number,
though a minority, of type faults encountered in the subject
systems, some of which have high impact. This provides
motivation for the development of the strongly-typed lan-
guages mentioned earlier, as well as type checkers [27], [28],
[29]. However, such tools and languages are far from being
a panacea, as the vast majority of JavaScript faults are not
type faults, according to our study. Therefore, tool devel-
opers should not focus exclusively on type checking when
looking for ways to improve the reliability of JavaScript
code because type checking, while useful, does not suffice
in detecting or eliminating most JavaScript faults.

According to Findings 5 and 11, there was a significant
decrease in the number of code-terminating failures and
browser specific faults; this suggests that developers of
browsers and browser-based tools are heading towards the
right direction in terms of facilitating the debugging process
for JavaScript faults and ensuring cross-browser compliance
of JavaScript code. However, from Findings 3 and 14, we
observed that the number of DOM-related faults and type
faults has remained relatively constant from 2004 to 2014;
hence, developers, testers, and tool designers must pay
more careful attention towards these two kinds of faults,
especially DOM-related faults, as they constitute almost 70%
of all JavaScript faults.

Finding 9 shows that the percentage of errors located in
the JavaScript code has increased from 2004 to 2014. This
suggests that tools for improving the client-side reliability
should consider performing an analysis of the client-side
code itself – which is where the majority of JavaScript bugs
arise as per Findings 7 and 8 – instead of simply looking at
how server-side code generates malformed client-side code,
as other tools have done [30], [31].

Finally, recall that this study focuses on client-side
JavaScript; hence, the results may not directly be applicable
to JavaScript developers at the server-side who use Node.js.
For example, there is no DOM present at the server-side,
which indicates that DOM-related faults will not be present
there. Nonetheless, many of the error and fault patterns we
found are not client-side-specific. A recent paper by Hanam
et al. [32], for instance, sheds light on some of the perva-
sive JavaScript bug patterns that appear at the server-side.
One of the bug patterns they found is “Dereferenced Non-

8. http://findbugs.sourceforge.net/
9. http://netbeans.org/
10. http://www.aptana.com/

Values”, which corresponds to both the “Undefined/Null
Variable Usage” fault category and the “Forgetting null/un-
defined check” error pattern. Hence, JavaScript developers
at the server-side can still gather important takeaways from
our results, even if our study was not specifically targeted
towards server-side JavaScript.

6 RELATED WORK

There has been a large number of empirical studies con-
ducted on faults that occur in various types of software
applications [16], [33], [34], [35], [36], [37]. Due to space
constraints, we focus on only those studies that pertain to
web applications.

Server-Side Studies. In the past, researchers have studied
the causes of web application faults at the server-side using
session-based workloads [38], server logs [39], and website
outage incidents [40]. Further, there have been studies on the
control-flow integrity [41] and end-to-end availability [42],
[43] of web applications. Finally, studies have been con-
ducted which propose web application fault models and
taxonomies [44], [45], [46]. Our current study differs from
these papers in that we focus on web application faults that
occur at the client-side, particularly ones that propagate into
the JavaScript code.

Client-Side Studies. Several empirical studies on the char-
acteristics of client-side JavaScript have been made. For
instance, Ratanaworabhan et al. [47] used their JSMeter tool
to analyze the dynamic behaviour of JavaScript in web
applications. Similar work was conducted by Richards et
al. [48] and Martinsen et al. [49]. A study of parallelism in
JavaScript code was also undertaken by Fortuna et al. [50].
Finally, there have been empirical studies on the security
of JavaScript. These include empirical studies on cross-site
scripting (XSS) sanitization [51], privacy-violating informa-
tion flows [52], and remote JavaScript inclusions [53], [54].
Unlike our work which studies functional JavaScript faults,
these related papers address non-functional properties such
as security and performance.

In recent work, Bajaj et al. [19] mined web application-
related questions in StackOverflow to determine common
difficulties that developers face when writing client-side
code. This work is similar to the current one in that it
attempts to infer reliability issues with JavaScript, using
developers’ questions as an indicator. However, unlike our
current work, this study does not make any attempt to
determine the characteristics of JavaScript faults.

Our earlier work [1] looked at the characteristics of
failures caused by JavaScript faults, based on console
logs. However, we did not study the causes or impact of
JavaScript faults, nor did we examine bug reports as we
do in this study. To the best of our knowledge, we are the
first to perform an empirical study on the characteristics of
these real-world JavaScript faults, particularly their causes
and impacts.

Finally, in very recent work which followed the origi-
nal paper on which this current work is based, Pradel et
al. [6] and Bae et al. [55] proposed tools for detecting type
inconsistencies and web API misuses in JavaScript code,
respectively. These studies provide examples of common

http://findbugs.sourceforge.net/
http://netbeans.org/
http://www.aptana.com/
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type faults and common web API misuse patterns. How-
ever, they do not establish the prevalence of their respective
fault categories, nor do they identify DOM-related faults as
an important subclass of JavaScript faults.

7 CONCLUSIONS

Client-side JavaScript contains many features that are at-
tractive to web application developers and is the basis for
modern web applications. However, it is prone to errors that
can impact functionality and user experience. In this paper,
we perform an empirical study of over 500 bug reports
from various web applications and JavaScript libraries to
help us understand the nature of the errors that cause
these faults, and the failures to which these faults lead. Our
results show that (1) around 68% of JavaScript faults are
DOM-related; (2) most (around 80%) high severity faults
are DOM-related; (3) the vast majority (around 83%) of
JavaScript faults are caused by errors manually introduced
by JavaScript code programmers; (4) error patterns exist in
JavaScript bug reports; (5) DOM-related faults take longer to
fix than non-DOM-related faults; (6) only a small but non-
negligible percentage of JavaScript faults are type faults; and
(7) although the percentage of code-terminating failures and
browser-specific faults has decreased over the past ten years,
the percentage of DOM-related faults and type faults has
remained relatively constant.

ACKNOWLEDGMENTS

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), a
Four Year Fellowship (FYF) from UBC, a MITACS Graduate
Fellowship, and a research gift from Intel Corporation.

REFERENCES

[1] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the
wild: An empirical study,” in Proceedings of the International Sympo-
sium on Software Reliability Engineering (ISSRE). IEEE Computer
Society, 2011, pp. 100–109.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
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